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Abstract: The integration of cutting-edge technologies—such as the Internet of Things (IoT),
artificial intelligence (AI), machine learning (ML), and various emerging technologies—is
revolutionizing agricultural practices, enhancing productivity, sustainability, and efficiency.
The objective of this study is to review the literature regarding the development and
evolution of AI as well as other emerging technologies in the various fields of Agriculture
as they are developed and transformed by integrating the above technologies. The areas
examined in this study are open field smart farming, vertical and indoor farming, zero waste
agriculture, precision livestock farming, smart greenhouses, and regenerative agriculture.
This paper links current research, technological innovations, and case studies to present
a comprehensive review of these emerging technologies being developed in the context
of smart agriculture, for the benefit of farmers and consumers in general. By exploring
practical applications and future perspectives, this work aims to provide valuable insights
to address global food security challenges, minimize environmental impacts, and support
sustainable development goals through the application of new technologies.

Keywords: artificial intelligence (AI); IoT; precision agriculture; smart farming; vertical
farming; indoor farming; zero waste agriculture; precision livestock; smart greenhouses;
regenerative agriculture

1. Introduction
The agricultural sector is undergoing a transformative evolution driven by the integra-

tion of cutting-edge technologies. As global population growth continues to escalate and
climate change imposes new challenges, there is a pressing need to transform traditional
farming practices—exploiting new technologies—to ensure food security, sustainability,
and efficiency. This paper explores the advancements and applications of modern tech-
nologies in diverse agricultural domains: open field smart farming, vertical and indoor
farming, zero waste agriculture, precision livestock, smart greenhouses, and regenerative
agriculture (Figure 1).
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Figure 1. Fields of smart agriculture. 

Open field smart farming harnesses the power of the Internet of Things (IoT), artifi-
cial intelligence (AI), and other new technologies to optimize crop production and re-
source management. The IoT refers to the concept of allowing an autonomous and auto-
mated exchange of information between real-world devices, exploiting network technol-
ogies such as Radio-Frequency IDentification (RFID) and Wireless Sensor Networks 
(WSNs). Some of these devices, termed sensors, gather information concerning their envi-
ronment (e.g., soil moisture, air temperature and humidity, animal temperature, and heart 
rate), while a second group of these devices, referred to as actuators, arrange for perform-
ing actions that modify their environment (e.g., perform irrigation, turn air conditioning 
on or off, regulate lighting, or issue alerts for farmers). Finally, a third group of devices 
provide services for storing and managing sensed data, as well as taking data-driven de-
cisions on the actions that should be taken by actuators [1,2]. In this context, drones and 
UAVs provide aerial imaging and precision spraying, while satellite imaging offers exten-
sive data on crop health, soil conditions, and weather patterns, enabling more informed 
decision-making [3]. 

The term artificial intelligence (AI) refers to the technology and science pertaining to 
the creation and functioning of systems that generate outputs such as content, forecasts, 
recommendations, or decisions for a given set of human-defined objectives [4]. AI appli-
cations in precision agriculture span across the whole agriculture value chain, including 
soil management, the monitoring of plant/livestock health, logistics, price forecasts, etc. 
[5]. AI applications utilize a multitude of algorithm techniques, with the majority of them 
being based on machine learning [6]; however, new developments such as generative AI 
(i.e., a set of computational techniques that generate seemingly new, meaningful content 
such as text, images, or audio from training data [7]) and regenerative AI (AI techniques 
that allow for the development of intelligent systems that can adapt and evolve and repair 
themselves [8]). In the rest of this paper, the term AI will be used to refer to mainstream 
machine learning-based applications, while the trends and potential of using generative 
and regenerative AI in precision farming will be analyzed in the Discussion Section. 

In order to promote transparency, verifiability, and immutability of data—including 
sensed data and decisions taken by AI—blockchain technologies can be used [9]. Block-
chain is a decentralized, distributed database that stores data in chains of cryptograph-
ically secure and immutable blocks. In the domain of precision agriculture, blockchain 
technology can be used to store records created during all stages of the agricultural value 
chain, including cultivation, harvesting, processing, storage, and transport of crops (and 
crop-based products), as well as livestock breeding. Ensuring data transparency, verifia-
bility, and immutability promotes trust and enables detecting and combating fraud [9–
11]. 

Vertical and indoor farming techniques transform urban agriculture by maximizing 
space utilization and minimizing environmental impacts. Hydroponics and aeroponics 
allow for soilless cultivation [12], and LED grow lights offer energy-efficient lighting so-
lutions tailored to plant needs [13]. The integration of advanced technologies—such as the 
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Open field smart farming harnesses the power of the Internet of Things (IoT), artificial
intelligence (AI), and other new technologies to optimize crop production and resource
management. The IoT refers to the concept of allowing an autonomous and automated
exchange of information between real-world devices, exploiting network technologies such
as Radio-Frequency IDentification (RFID) and Wireless Sensor Networks (WSNs). Some
of these devices, termed sensors, gather information concerning their environment (e.g.,
soil moisture, air temperature and humidity, animal temperature, and heart rate), while a
second group of these devices, referred to as actuators, arrange for performing actions that
modify their environment (e.g., perform irrigation, turn air conditioning on or off, regulate
lighting, or issue alerts for farmers). Finally, a third group of devices provide services for
storing and managing sensed data, as well as taking data-driven decisions on the actions
that should be taken by actuators [1,2]. In this context, drones and UAVs provide aerial
imaging and precision spraying, while satellite imaging offers extensive data on crop health,
soil conditions, and weather patterns, enabling more informed decision-making [3].

The term artificial intelligence (AI) refers to the technology and science pertaining to
the creation and functioning of systems that generate outputs such as content, forecasts,
recommendations, or decisions for a given set of human-defined objectives [4]. AI applica-
tions in precision agriculture span across the whole agriculture value chain, including soil
management, the monitoring of plant/livestock health, logistics, price forecasts, etc. [5]. AI
applications utilize a multitude of algorithm techniques, with the majority of them being
based on machine learning [6]; however, new developments such as generative AI (i.e., a
set of computational techniques that generate seemingly new, meaningful content such
as text, images, or audio from training data [7]) and regenerative AI (AI techniques that
allow for the development of intelligent systems that can adapt and evolve and repair
themselves [8]). In the rest of this paper, the term AI will be used to refer to mainstream
machine learning-based applications, while the trends and potential of using generative
and regenerative AI in precision farming will be analyzed in the Discussion Section.

In order to promote transparency, verifiability, and immutability of data—including
sensed data and decisions taken by AI—blockchain technologies can be used [9]. Blockchain
is a decentralized, distributed database that stores data in chains of cryptographically secure
and immutable blocks. In the domain of precision agriculture, blockchain technology
can be used to store records created during all stages of the agricultural value chain,
including cultivation, harvesting, processing, storage, and transport of crops (and crop-
based products), as well as livestock breeding. Ensuring data transparency, verifiability,
and immutability promotes trust and enables detecting and combating fraud [9–11].

Vertical and indoor farming techniques transform urban agriculture by maximizing
space utilization and minimizing environmental impacts. Hydroponics and aeroponics
allow for soilless cultivation [12], and LED grow lights offer energy-efficient lighting
solutions tailored to plant needs [13]. The integration of advanced technologies—such as
the IoT, AI, and automated climate control systems—ensure optimal growing conditions,
further enhancing productivity and sustainability in controlled environments [14].
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Zero waste agriculture focuses on creating circular systems where waste is minimized
and repurposed. The use of biodegradable materials and anaerobic digesters transforms
agricultural waste into biogas and organic fertilizers [15]. Aquaponics, a symbiotic system
combining aquaculture and hydroponics, exemplifies the potential of integrated waste-
free farming practices [16]. The realization of the objectives of zero waste agriculture
necessitates the incorporation of cutting-edge technologies like the IoT, AI, biotechnology,
and renewable energy systems.

Precision livestock management employs wearable health monitors and automated
feeding systems to monitor and enhance animal health, welfare, and productivity [17]. Ge-
nomic selection utilizes genetic information to improve breeding programs, and enhances
characteristics such as disease resistance and productivity [18].

Smart greenhouses integrate the IoT, AI, and automated systems to maintain op-
timal growing conditions, improve crop yields, and enhance resource efficiency. Auto-
mated irrigation systems and robotic harvesters reduce labor costs and water waste, while
integrated pest management systems use sensors and AI to manage pest populations
sustainably [19–21].

Regenerative agriculture aims to restore soil health, increase biodiversity, and amplify
carbon sequestration [22], promoting long-term ecological sustainability. Technologies such
as cover cropping, soil health sensors, and carbon sequestration measurement tools are
required to advance these practices [23]. AI and the IoT further enhance the monitoring
and implementation of regenerative techniques [24,25].

Additionally, general new technologies like 5G connectivity, biotechnology, robotics,
and machine learning are revolutionizing agricultural practices. AI-driven predictive
analytics and decision support systems, along with the rapid data transfer capabilities of 5G,
are enhancing the efficiency and sustainability of farming operations [26]. Biotechnology,
including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and other
gene-editing tools, is developing crops with improved characteristics [27], while robotics
and automation are streamlining planting, weeding, and harvesting processes [19,20,28].

The primary objective of this study is to conduct a comprehensive review of the inte-
gration of advanced technologies in the agricultural sector, including AI, the IoT, blockchain,
and other emerging innovations. This research examines the impact of these technologies
on the transformation of traditional farming practices in various agricultural sectors, such
as open field smart farming, vertical and indoor Farming, zero waste agriculture, precision
livestock farming, smart greenhouses, and regenerative agriculture. These areas cover both
the transformation of more traditional farming practices (open field farming, livestock, and
greenhouses), as well as more recent farming trends (vertical and indoor farming, zero
waste farming, and regenerative farming).

Synthesizing the latest research, technological advances, and practical applications,
this study offers a comprehensive understanding of how these innovations address some of
the most pressing global challenges, such as food security, environmental sustainability, and
climate change in the above sectors of farming. This paper highlights the potential of these
technologies to boost productivity, reduce waste, and create more resilient agricultural
systems that are able to adapt to the demands of a growing global population and a
changing climate. This research also contributes to a broader understanding of how
technological innovation can address global agricultural challenges and supports the
continued evolution of the agricultural sector into a more sustainable and resilient industry.

Furthermore, this study serves as a comprehensive resource to guide future research
and development efforts in sustainable agricultural technologies. It aims to foster col-
laboration between researchers, policymakers, and industry stakeholders, facilitating the
creation and implementation of innovative solutions that will drive the agricultural sector
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toward greater sustainability and efficiency. The insights provided in this paper not only
create a road map for future technological developments but also highlight the impor-
tance of integrating these technologies into real agricultural practices to achieve long-term
sustainability goals.

Key scientific questions addressed in this review include the following:

• RQ1. Optimizing resource management: how can emerging technologies such as AI
and the IoT optimize resource management in agriculture?

• RQ2. Advantages and challenges of vertical and indoor farming: what are the benefits
and challenges of applying AI and, in general, emerging new technologies to the
development of vertical and indoor farming techniques?

• RQ3. Sustainability through zero waste agriculture: how can AI, the IoT, and new
technologies in general be applied to zero waste agriculture so that it can develop and
contribute as a sustainable agricultural practice?

• RQ4. Precision animal farming for improved animal health: what is the role of
AI and, more generally, emerging new technologies in improving animal health
and productivity?

• RQ5. Advances in smart greenhouses: how do smart greenhouses incorporate ad-
vanced technologies such as AI, ML, and the IoT to enhance crop production?

• RQ6. Enhancing regenerative agriculture with modern technologies: how can
regenerative agriculture practices be improved by AI, ML, and more generally
new technologies?

By addressing these critical scientific questions, this review synthesizes current re-
search and technological advancements, offering practical insights and future prospects for
sustainable agricultural development. The findings provide a valuable foundation for fur-
ther research, guiding interdisciplinary collaboration and innovation aimed at addressing
global challenges such as food security, environmental sustainability, and climate change.

The remainder of this paper is structured as follows. Section 2 elaborates on the
methods and procedures used for data collection, providing a comprehensive overview
of the techniques used to gather relevant information for this study. Sections 3–8 explore
various sectors of agriculture, detailing the technologies that have been or are being devel-
oped and applied to these sectors. It also discusses the specific challenges and concerns
faced in implementing these new technologies, including issues related to integration,
scalability, and farmer adoption. Section 9 summarizes the data presented in the research,
listing answers to the RQs. Finally, Section 10 summarizes the findings and ideas from the
previous sections, presenting the overall conclusions of this study. It also offers answers to
the critical RQs raised above and outlines future research directions and possible strategies
to overcome the identified challenges, to further advance the field of smart agriculture.

2. Data and Methods
The objective of this study is to conduct a comprehensive review of the integration of

advanced technologies in the agricultural sector, including AI, the IoT, blockchain, and other
emerging innovations. This study will reveal application areas of technologies in different
fields of smart agriculture, and provide insights on the current situation in the agricultural
sector concerning the uptake and implementation of the smart agriculture model.

This review adopts a research methodology based on the PRISMA (Preferred Report-
ing Items for Systematic reviews and Meta-Analyses) guidelines and recommendations.
PRISMA offers a systematic and rigorous methodology for reviewing and synthesizing the
available literature [29]. Figure 2 illustrates the application of the PRISMA methodology in
the context of the presented research.
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In order to collect the data, relevant publications at scientific conferences, in inter-
national scientific journals, as well as on the internet were identified and studied. Some
important papers (cf. Table 1) were used both as information sources and for identification
of the additional literature: firstly, the citation lists of these papers were examined; secondly,
searches for additional documents citing these papers were performed. Scientific publica-
tion databases were also used to identify relevant papers by issuing queries and examining
the query results. Table 2 lists the databases used and the associated querying modes.

Table 1. Important scientific publications used both as information sources and for identification of
the additional literature.

Description Year of Publication

A Wireless Sensor Network Deployment for Soil Moisture
Monitoring in Precision Agriculture. 2021

Unmanned Aerial Vehicles (UAV) in Precision Agriculture:
Applications and Challenges. 2021
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Table 1. Cont.

Description Year of Publication

Robotics, IoT, and AI in the Automation of Agricultural Industry: A
Review. 2020

Satellite Imagery in Precision Agriculture. 2024

Machine Learning in Agriculture: A Comprehensive
Updated Review. 2021

Seeing the Lights for Leafy Greens in Indoor Vertical Farming. 2020

Latest Advancements on Livestock Waste Management and Biogas
Production: Bangladesh’s Perspective. 2020

Livestock Management with Unmanned Aerial Vehicles: A Review. 2022

A Review of Traditional and Machine Learning Methods Applied to
Animal Breeding. 2024

Energy-Saving Design and Control Strategy towards Modern
Sustainable Greenhouse: A Review. 2022

Is Blockchain a Silver Bullet for Supply Chain Management?
Technical Challenges and Research Opportunities. 2020

Enhancing Water Management in Smart Agriculture: A Cloud and
IoT-Based Smart Irrigation System. 2024

Plant Demand Adapted Fertilization in Organic and
Precision Farming. 2021

Renewable Energy and Sustainable Agriculture: Review of Indicators. 2023

Table 2. Scientific publication databases used for retrieving additional research works and associated
querying modes.

Database Use

Scopus Extract data using queries

Google Scholar Search for articles by keyword, author, and article title

Searches were also conducted in scientific publication databases and on the internet.
The Scopus and Google Scholar platforms were chosen for this work, that is to exploit the
increased rigor of Scopus and the wider comprehensiveness of Google Scholar. Relevant
scientific publications were collected from the Scopus academic database by applying
appropriate search filters. To extract the desired results, we employed the queries presented
in Table 3. For the last query, the following variations were made:

1. The placeholder text keywords for domain selection was replaced by keywords describ-
ing smart/precision agriculture in general, or describing a specific sector of smart
agriculture surveyed in this paper. More specifically, the following keyword com-
binations were used as replacements: (a) “precision AND agriculture”, (b) “smart
AND agriculture”, (c) “smart AND farming”, (d) “regenerative AND agriculture”, (e)
“smart AND greenhouses”, (f) precision AND livestock, (g) “zero AND waste AND
agriculture” and (h) “vertical AND indoor AND farming”;

2. The placeholder text keywords for the specific technology was substituted by appropriate
keywords that described the technology in question, e.g., “Internet of Things”, “agri-
cultural robots”, “satellite imaging”, “blockchain”, “hydroponics and aeroponics” or
“artificial intelligence” (cf. Table 2).

Substitutions (1) and (2) listed above were applied in combination, i.e., when the
placeholder text keywords for domain selection was replaced by “precision AND agriculture”,
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the placeholder text keywords for the specific technology was iteratively replaced by appro-
priate keywords describing the pertinent technologies (“Internet of Things”, “agricultural
robots”). This procedure was repeated for each of the replacement texts used for “keywords
for domain selection”.

Table 3. Search queries used to locate scientific publications in Scopus.

Description Query

Query for precision agriculture articles TITLE-ABS-KEY (precision AND agriculture)

Query for smart agriculture articles TITLE-ABS-KEY (smart AND agriculture)

Query for smart farming articles TITLE-ABS-KEY (smart AND farming)

Query for regenerative agriculture articles TITLE-ABS-KEY (regenerative AND agriculture)

Query for smart greenhouses articles TITLE-ABS-KEY (smart AND greenhouses)

Query for smart livestock articles TITLE-ABS-KEY (precision AND livestock)

Query for zero waste agriculture articles TITLE-ABS-KEY (zero AND waste AND agriculture)

Query for vertical indoor farming articles TITLE-ABS-KEY (vertical AND indoor AND farming)

Query for the number of articles related to precision
agriculture, as well as each new technology, along with

the year of their first publication.

(TITLE-ABS-KEY (keywords for domain selection) AND
TITLE-ABS-KEY (keywords for the specific technology))
AND (PUBYEAR > 1980 AND PUBYEAR ≤ 2024)

The development of technology in precision agriculture can be observed through the
publication of scientific papers. Table 4 illustrates insights regarding the year of appearance
of each of the new technologies in agriculture, and the number of scientific publications
concerning each specific technology until today.

Table 4. Evolution of technology in agriculture, as reflected through the publication of scien-
tific papers.

Technology Year of First Scientific
Publication

Number of Scientific Papers
Published Until Today

Precision agriculture 1981 18,540
Field monitoring 1993 1806
Precision farming 1995 4037
Satellite imagery 1996 589

Precision irrigation 1997 1927
Decision support systems 1997 875

Remote sensing 1997 3008
Geographic information systems 1997 499

Variable Rate Technology 1997 488
Agricultural robots 1998 2123

Livestock monitoring 2000 375
Smart irrigation 2001 392

Greenhouse monitoring 2001 201
Sensors/Sensor nodes 2001 633

Autonomous agricultural machinery 2002 100
Unmanned Aerial Vehicles (UAVs) 2002 1753

Artificial intelligence 2003 1011
WSN in precision agriculture 2003 492

Climate and weather prediction models 2005 33
Global Positioning System 2005 767

Light detection and ranging 2006 73
drones 2008 664
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Table 4. Cont.

Technology Year of First Scientific
Publication

Number of Scientific Papers Published
Until Today

IoT in precision agriculture 2011 1358
Smartphone apps and mobile technology 2018 10

Blockchain and supply chain management 2020 12

In the first row, Table 4 lists the year of publication along with the number of scientific
papers focusing on precision agriculture for the period 1981–2025. Each of the subsequent
rows concerns the use of a specific technology in the context of precision agriculture and
lists the year of the first relevant scientific publication and the total number of scientific
papers concerning the application of the specific technology in the domain of precision
agriculture until today.

3. Open Field Smart Farming
Open Field Smart Farming represents a paradigm shift in agricultural practices, lever-

aging advanced technologies such as the IoT, AI, and data analytics to optimize crop
production, resource management, and sustainability. The integration of these technologies
addresses the critical challenges of environmental sustainability, including minimizing
waste and reducing the impact on the environment. Additionally, open field smart farming
reduces the need for agricultural inputs like water, fertilizers, and pesticides, thus tackling
resource-scarcity issues, and improves farming efficiency and productivity, leading to in-
creased yields [30,31]. Consequently, precision farming can contribute to the mitigation of
food scarcity and insecurity issues provided that appropriate action is taken to alleviate the
effects of additional factors related to food scarcity and insecurity, which include conflict
and insecurity, economic shocks, weather extremes, loss of biodiversity [32–34], and lack of
fairness [35].

In the following subsections, we discuss the most important emerging technologies
that, in combination with AI, contribute to the transformation of the open field smart
farming sector; these technologies are illustrated in Figure 3.
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3.1. IoT and Sensor Technology

The IoT plays a crucial role in open field smart farming by enabling real-time moni-
toring and data collection from various sensors deployed across the farm. These sensors
measure parameters such as soil moisture, temperature, humidity, nutrient levels, and
crop health. For instance, soil moisture sensors supply continuous data that can be fed
into precise irrigation systems that deliver optimal quantities of water to plants, ensuring
water conservation and fostering optimal crop growth [36–38]. Furthermore, the risk of
over-irrigation is reduced, thus limiting the probability of nutrient leaching.

3.2. Drones and UAVs

Drones and Unmanned Aerial Vehicles (UAVs) are extensively used in modern agri-
culture. Drones employ advanced imagery sensors, such as high-resolution cameras,
multispectral, and hyperspectral sensors, capturing detailed aerial imagery of fields. This
imagery is subsequently analyzed to provide insights concerning crop health, pest infes-
tations, nutrient deficiencies, fruit ripeness, soil composition, etc.; this enables the early
detection of issues and application of targeted measures, including the precision spaying of
pesticides or fertilizers, achieving a reduction in the use of chemicals, and enhanced crop
yields [39,40].

3.3. Satellite Imaging and Remote Sensing

Satellite imaging and remote-sensing technologies enhance the monitoring capa-
bilities of farmers, offering information on the condition of crops, soil wealth, and
weather conditions. Through satellite imagery—which is analyzed using remote-sensing
algorithms—cultivators may identify water stress areas, obtain insights on crop vigor,
and estimate harvest times, thus becoming empowered to manage their farms more effi-
ciently [3,41–43].

3.4. Artificial Intelligence and Machine Learning

AI and ML are key enablers for the transformation of farming processes, revolution-
izing the usage and analysis of agricultural data. AI and ML techniques are used for
processing big data streams obtained from a multitude of sources, including IoT devices,
drones, and satellites, producing predictive models and actionable insights. For instance,
AI-based techniques can analyze historical data and current weather conditions to make
predictions on pest outbreaks, enabling farmers to apply proactive pest management [44,45].
Additionally, tools based on ML can be used for the planning of land usage, including the
selection of crop types and varieties, for the tuning of planting schedules, for producing
forecasts on crop yields and prices, and others. Farmers may exploit these outcomes not
only to enhance farm productivity but also to drive other processes of the agricultural cycle
more efficiently, for example, ensuring the availability of storage areas and optimizing
farm-worker hiring, to name a few.

3.5. Blockchain Technology

Blockchain technology is emerging as a powerful tool that may be exploited in the
farming process to underpin transparency and traceability in agricultural supply chains. In
particular, blockchain technology can be used to store records created during the cultivation,
harvesting, processing, storage, and transport of crops (and crop-based products) in a trans-
parent and verifiable fashion. These records can offer data on the origin, cultivation process,
pesticides and fertilizers used, crop quality, processing methods, storage and transportation
conditions, etc., of agricultural products. Through these records, a reliable traceability
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framework can be established, contributing to the promotion of consumer information and
trust, fraud detection and prevention, while food safety can be ensured [9–11].

In order to utilize blockchain technologies, appropriate infrastructure must be installed
and made operational. To this end, either private or public blockchain architectures can
be employed. Richard et al. [46] analyze the cost of the two options, concluding that the
use of private blockchain infrastructures entails significantly reduced costs; however, this
approach requires increased technical knowledge for the setup, monitoring, and right-sizing
of the blockchain system. Notably, the number and power of the machines/data centers
required to support blockchain technology varies depending on the type of blockchain
and the scale of the application. Public blockchains (e.g., Ethereum) are based on nodes
distributed globally, while private blockchains may have nodes hosted in local or regional
data centers, tailored to specific use cases. The scale of the blockchain may vary, depending
on the operator’s size and intended use; for instance, a single farm using blockchain to
store information for its own products only will require a small-scale infrastructure, while
organic product certifiers using blockchain to store records for all products they certify will
require infrastructure of a larger scale.

It is worth noting that while blockchain provides mechanisms to support the im-
mutable and verifiable storage of traceability and quality-related information, it does not
automatically solve the challenges associated with points of mixing or the re-entry of mixed
products. Effective traceability requires the integration of real-time monitoring systems,
such as IoT devices, to capture and record data as events occur. In addition, well-defined
management protocols must describe how data for each mixing or separation event is
recorded and stored, ensuring that even complex supply chain scenarios can be transpar-
ently monitored. By implementing such measures, blockchain technology can help promote
consumer trust, detect and prevent fraud, and improve food safety.

3.6. Precision Agriculture Tools

Precision agriculture tools facilitate site-specific farming practices through the integra-
tion of state-of-the-art technologies. Variable Rate Technology (VRT) assesses the potential
and needs of different field zones, and these computations are subsequently used as in-
put to farming processes, such as fertilization, seeding, and pesticide application [47,48].
The benefits of this focused approach include the minimization of wastage, reduction
in environmental impact, maximization of crop performance, and improvement in yield
quality [49].

3.7. Challenges and Future Prospects

Despite the promising advancements, the adoption of open field smart farming tech-
nologies faces several challenges, including high initial costs, technical complexity, and
the need for robust data infrastructure. However, ongoing research and innovation are
providing solutions with reduced costs and enabling their use by users with more limited
technological expertise. As the IoT, AI, and blockchain continue to evolve, their integration
into open field farming is expected to become more seamless and widespread, paving the
way for a more sustainable and efficient agricultural future.

4. Vertical and Indoor Farming: Harnessing New Technologies for
Sustainable Agriculture

It is estimated that, by 2050, the Earth’s population will reach 9.7 billion [50–52]. As a
result, an increase in food production by 50% is necessary [53] in order to (a) cover the needs
of the additional population, and (b) address the issues of hunger and undernourishment,
which currently affect 29.3% percent of the global population (2.3 billion people) that
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are facing moderate or severe food insecurity [54]. However, arable land per capita is
forecast to be less than 0.2 hectares by 2050, sustaining a reduction of 66% compared to
the corresponding amount in the year 1970 [55]. Therefore, it is imperative to substantially
raise farming productivity. These issues are further aggravated due to the reduction in soil
nutrients in arable land, climate diversity, and climate change repercussions [56].

Vertical and indoor farming are innovative agricultural practices designed to maximize
space utilization and minimize environmental impact by growing crops in controlled, often
urban, environments [57]. Crops of this type can also be grown reliably all year round
as they are not dependent on local weather conditions [58]; this aspect also makes them
immune to climate change effects. These agricultural systems are particularly important
because they contribute to addressing the food security challenges posed by urbanization,
climate change, and the reduction in arable land. The minimization of pesticides and
fertilizers required in these crops leads directly to a reduction in greenhouse gas emissions,
such as nitrogen monoxide [59]. The integration of advanced technologies, such as the IoT,
AI, LED lighting [60], and automation systems is pivotal in enhancing the efficiency and
productivity of these farming systems.

Figure 4 illustrates the most important technologies applied in the field of vertical and
indoor agriculture.
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4.1. Artificial Intelligence and Machine Learning

The difficulties that must be faced in vertical and indoor agriculture crops are also
presented in the simultaneous monitoring of multiple indicators, the development of
advice on the optimal use of actions for the correct growth of plants, as well as their
holistic monitoring.

To address these issues, technologies such as AI and ML are used, and although
they are investigated infrequently [61], their adoption in such systems has the potential to
improve product quality and production in the long term [55], resulting in these systems
becoming more sustainable and productive over time.

Vertical hydroponics have been shown to achieve improved harvest and efficiency [62]
compared to traditional soil cultivation. This result is attributed to (a) reduced water
evaporation and (b) the potential to exercise precise control on the supply of nutrients
to plants. The integration of AI and ML in vertical hydroponics can further enhance the
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farming process efficiency, supporting (i) disease detection and diagnosis, (ii) the analysis
of plant traits, (iii) plant growth monitoring and pertinent alert provision, (iv) stress
detection, and (v) yield quantity estimation. These functionalities empower farmers to
take proactive measures in order to protect their crops and maximize yield. The use of AI
and ML can additionally underpin the successful and efficient cultivation of specific plant
categories, such as exotic and medicinal plants, in a sustainable fashion. Overall, through
this process, food security can be enhanced while additionally, health and well-being can
be promoted [63].

4.2. Hydroponics and Aeroponics

Hydroponics and aeroponics are soilless farming techniques where plants grow in
nutrient-rich solutions or mist environments. More specifically, in hydroponics, plants grow
in water-based nutrient solutions, enabling precise control over nutrient provision and
eliminating issues related to soil, such as poor drainage, incorrect soil pH, or erosion [16].
In aeroponics, on the other hand, plants are suspended in the air and their roots are
misted with nutrient solutions; this ensures increased oxygen availability, which in turn—
in conjunction with the precise provision of nutrients—supports faster plant growth and
higher yields [64,65].

4.3. LED Grow Lights

Light-emitting diode (LED) technology is increasingly utilized in indoor farming
installations due to its capability to support optimal plant growth by providing energy-
efficient and spectrum-tuned lighting. LED lighting allows customizations of the emitted
light wavelengths, and this feature is exploited to provide each cultivation with the lighting
conditions that are most suitable for their photosynthesis process. Blue light plays an
important role in photomorphogenesis, affecting photosynthesis, chlorophyll synthesis,
and shoot elongation (1), especially when combined with red light. Red light is efficient
for photosynthesis (2) but its exclusive use can cause abnormal growth (3), making the
addition of blue light necessary. Green light improves photosynthesis in the lower layers
and facilitates the assessment of plant condition. The combination of red and blue light
proves to be the most efficient, enhancing growth and yields, while the incorporation of
green light in such combinations offers even better results. Infrared light can promote
flowering and shoot elongation but without blue light, growth may be abnormal [66–
68]. This leads to a number of benefits, including enhanced plant growth, acceleration of
flowering, and an improvement in crop yields while additionally, energy consumption is
substantially reduced [13]. LED lighting also enables multi-layered vertical farming, where
crops are cultivated in vertical layers, thus increasing space utilization efficiency [60,69,70].

4.4. Automated Climate Control Systems

The success of vertical and indoor farming is highly dependent on the provision of
optimal growing conditions for plants. To this end, farmers utilize automated climate
control systems that regulate key parameters, including humidity, temperature, light
wavelength and intensity, as well as CO2 levels. In this context, IoT sensors monitor
the environment and stream their measurements as input to AI-based algorithms, which
determine the adjustments that need to be made to ensure optimal conditions. Finally,
these adjustments are realized through suitable actuators [14].

4.5. Robotics and Automation

Numerous tasks in vertical and indoor farming are transformed through the use of
robotics and automation. The range of affected tasks spans across the whole agricultural
cycle, including planting, pruning, harvesting, and packaging. The adoption of these
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technologies leads to reduced labor costs, elevated operational efficiency, and underpins
multiple precision agriculture practices. For example, computer vision systems can accu-
rately identify produce that is ready for harvesting, and direct robotic arms can collect them
with high precision, significantly reducing potential damage to crops [28,71]. Automated
solutions may also be applied to irrigation and fertilizer delivery systems, allowing for
precise control over the nutrient and water supply, optimizing resource usage, promoting
sustainability, and ensuring plant health and yield quality.

4.6. IoT and Data Analytics

Data analytics are pivotal to vertical and indoor farming. Data analytics, fueled by
measurements sourced from IoT sensors, provide real-time insights into plant health and
environmental conditions. Sensors collect a wide range of data concerning important
parameters, such as soil moisture, levels of nutrients, leaf wetness, air quality, and lighting
conditions. These data are transmitted to cloud-based platforms where they are analyzed
to inform decision-making processes [72]. Advanced data analytics and AI can identify
patterns and trends, enabling predictive maintenance, optimizing resource allocation, and
improving overall farm management.

4.7. Vertical Farming Structures and Design

Vertical farming employs special structures and designs, such as modular and stack-
able systems, to improve space utilization and promote scalability. To this end, movable
racks and automated conveyor systems are installed, through which plants are transported
through different growth stages, ensuring that each plant receives optimal light exposure
and nutrient delivery. These systems are more widely used in urban environments, over-
coming space limitations and reducing the distance between production locations and
consumer markets [73].

4.8. Economic and Environmental Benefits

Vertical and indoor farming reap significant benefits from technological advancements
in vertical and indoor farming. These advancements allow for the deployment of systems
that require less land area, water consumption, and chemicals compared to traditional
farming. Many crops are grown in indoor farms with controlled environments and, there-
fore, are protected more effectively from pests and diseases, increasing food security and
limiting crop losses [74]. Food resilience and the continuous supply of farming products are
also promoted through the ability to grow crops across all seasons at vertical farms. Finally,
by allowing the placement of production farms close to consumption points, transportation
costs and the related environmental impacts are reduced.

4.9. Challenges and Future Prospects

Despite the numerous advantages, vertical and indoor farming methods face
challenges, including (a) significant costs for the initial setup, (b) increased energy
consumption—and the consequent energy costs—for lighting and climate conditioning,
and (c) the need for skilled workers who can operate the technologically advanced systems.
However, ongoing research and technological innovations are addressing these issues by
developing more energy-efficient systems, reducing costs, and improving the scalability
of vertical farms. As urban populations continue to grow and the demand for sustainable
food production increases, vertical and indoor farming approaches are poised to play a
critical role in the future of agriculture.
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5. Zero Waste Agriculture: Integrating Advanced Technologies for
Sustainable Farming

Zero waste agriculture is an innovative approach focused on creating circular agricul-
tural systems where waste is minimized, repurposed, and reintegrated into the farming
cycle. This paradigm shift from conventional farming aims to enhance sustainability, im-
prove resource efficiency, and reduce the environmental impact of agricultural activities.
The integration of advanced technologies, such as the IoT, AI, biotechnology, and renewable
energy systems is pivotal in achieving the goals of zero waste agriculture. Figure 5 depicts
the most important technologies applied in the field of zero waste agriculture.
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5.1. Artificial Intelligence and Machine Learning

Interestingly, almost all agricultural activities produce waste. Recent studies reveal
that agricultural activities generate approximately five billion tons of waste each year
worldwide. Improper disposal of these wastes can lead to serious environmental contam-
ination, posing significant threats to human health, while considerable economic losses
are also incurred. It is therefore imperative that (a) waste production is minimized and
(b) any wastes generated are properly disposed of, recycled, or used to create value for
the environment and agriculture. We find that ”reducing”, ”reusing”, and ”recycling”
field waste can significantly reduce the environmental footprint of agricultural practices,
potentially reducing greenhouse gas emissions by up to 25% and saving water resources by
15% [75]. The application of AI and ML can ensure automation and precision application,
thus reducing waste compared to human or traditional manufacturing processes [76].

5.2. Biodegradable Materials and Composting

One of the fundamental principles of zero waste agriculture is the use of biodegrad-
able materials and composting to manage organic waste. Organic waste from crops and
livestock can be composted to produce nutrient-rich compost, which is then used to im-
prove soil health and fertility. Advanced composting technologies, including aerobic and
anaerobic digesters, accelerate the decomposition process and enhance the quality of the
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compost produced, enabling the simultaneous production of biogas as a renewable en-
ergy source [77–80]. This closed-loop system reduces the need for chemical fertilizers and
promotes a sustainable nutrient cycle.

It is worth noting that while composting is not a zero-emission process, having emis-
sions that contain CO2 (as a result of organic material decomposition), methane (CH4),
ammonia (NH3), and nitrous oxide (N2O) can contribute to constraining the growth of
greenhouse gas emissions [81]. The key to this procedure is the controlling of emissions
through the addition of organic and inorganic materials [82,83], through inoculating mi-
croorganisms [84], or by employing physical methods [85,86]. A survey on methods for
constraining greenhouse gas emissions during composting or exploiting these emissions is
given in [87].

5.3. Anaerobic Digesters and Biogas Production

Anaerobic digestion is a technology that converts organic waste into biogas and
digestate through microbial processes in the absence of oxygen. Biogas, after complete
treatment to remove the carbon dioxide it contains as raw biogas [88], is primarily composed
of methane and can be used as a renewable energy source for heating, electricity, and
vehicle fuel. When methane is burned, carbon dioxide is produced, which returns to the
atmosphere; however, this carbon dioxide production is considered carbon-neutral as it
comes from biomass and not fossil fuels [79]. The digestate, a by-product of anaerobic
digestion, is a nutrient-rich material that can be applied to fields as an organic fertilizer [15].
This process not only manages waste efficiently but also reduces greenhouse gas emissions
by capturing methane that would otherwise be released into the atmosphere.

An extensive study on the potential of anaerobic digestion for limiting greenhouse
gas emissions is presented in [89]. The study highlights the importance of a number of
parameters, including soil carbon storage efficiency in the baseline, heat recovery rate in
the biogas production process, and digestate handling, in order to achieve environmental
benefits from anaerobic digestion. These parameters should be carefully considered in all
anaerobic digestion installations.

5.4. Aquaponics and Integrated Systems

Aquaponics combines aquaculture (fish farming) with hydroponics (soilless plant
cultivation) to create a symbiotic system where waste produced by fish is used as a nutrient
source for plants. In turn, the plants filter and purify the water, which is recirculated
back to the fish tanks. This integrated system minimizes waste, conserves water, and
maximizes resource use efficiency [16]. Integrated systems are used in aquaponics to
improve water quality, adjust nutrient levels, and set environmental conditions to optimal
values. Consequently, integrated systems contribute to the enhancement of aquaponic
systems’ productivity and sustainability.

5.5. Waste Minimization

Smart farming technologies contribute to the goal of minimizing waste in farming.
These technologies enable farmers to apply inputs such as fertilizers, pesticides, and
water precisely where and when they are needed, reducing over-application and runoff.
For instance, VRT allows for the site-specific management of inputs based on soil and
crop variability, ensuring the optimal use of resources and minimizing environmental
impact [90]. Remote-sensing technologies, including drones and satellite imagery, provide
detailed, real-time insights into crop health and soil conditions. These insights enable
targeted interventions that reduce input waste and improve crop yields [91].
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5.6. Biotechnology and Waste Valorization

Biotechnology is a key driver of the valorization of waste produced in various phases
of the agricultural production cycle into products of high value, thus playing a crucial role
in zero waste agriculture. Biofuels, bio-based chemicals, and biodegradable plastics are
produced from agricultural remains using biotechnological techniques such as enzymatic
hydrolysis and fermentation. For instance, microbial fermentation processes are applied to
lignocellulosic biomass from crop residues to produce bioethanol [92]. Waste valorization
achieves a three-fold goal to (a) reduce waste, (b) create useful (by-)products, and (c) create
additional income for agrarians.

5.7. IoT and Sensor Technologies

IoT and sensors enable the monitoring and control of agricultural processes in real
time, improving their efficiency and minimizing waste production. For example, precision
irrigation systems source data from soil moisture sensors and compute the exact amount of
water to be delivered, reducing the waste of water and preventing soil degradation [36].
Similarly, sensors are used to monitor environmental conditions that affect plants, including
humidity, temperature, and air quality. These data are then used for decision-making in
agricultural processes, such as irrigation or temperature and air conditioning, ensuring
optimal growing conditions and minimizing resource use. IoT sensors are also used in
inventory tracking and merchandise condition monitoring, supporting farmers in managing
inputs more effectively, reducing waste and losses [93,94].

5.8. Nutrient Recycling and Recovery

Waste produced during various processes contains considerable amounts of nutri-
ents. Nutrient recycling and recovery technologies allow for capturing these nutrients
and further exploiting them in plant cultivation activities, such as fertilization, clos-
ing the nutrient loop, minimizing waste production, and reducing the need for use
of synthetic fertilizers. Current developments allow for the production of fertilizers
that are environmentally safe and rich in nutrients by capturing nutrients from human
and animal waste [95]. Nutrient recycling and recovery technologies are an important
means of achieving sustainable nutrient management since they considerably reduce
the environmental impact related to the essential goals of soil fertility enhancement and
crop production support.

5.9. Automated Farming Systems

Robotics and AI systems are increasingly integrated into automated farming systems,
increasing the efficiency of plant cultivation operations and reducing labor costs. Auto-
mated farming systems currently support a number of farming tasks, including planting,
weeding, irrigation, and harvesting, delivering elevated precision and efficiency and, in
parallel, minimizing waste and plant damage [96]. Automated farming systems obtain
data from a wide and diverse range of sources, including imagery, hyperspectral sensors,
climate-related sensing devices, etc., to drive and optimize farming practices, minimize
the use of resources, and increase crop yield quantity and quality. For instance, plant
disease management systems exploit imagery and weather data to detect or forecast disease
outbreaks, and appropriately recommend plant protection applications in a timely and
efficient fashion, enhancing productivity and reducing both waste and environmental
impact [97].
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5.10. Renewable Energy Systems

Farmers are increasingly installing and using renewable energy systems such as
wind power converters and solar cells. The energy harvested from these systems is then
used in agricultural processes, leading to reduced costs, a decreased use of fossil fuels,
smaller carbon footprints, and increased sustainability [98]. However, to fully realize
the benefits, these systems need to be connected to the grid or energy storage, which
significantly increases costs and can increase the carbon footprint due to the materials
required. Nevertheless, these systems remain critical for the transition to sustainable
agriculture, especially when combined with practices that optimize their use. For instance,
solar power-driven irrigation systems achieve improved efficiency and sustainability for
water management in agriculture [99–101]. Furthermore, [102] reports on the use of biomass
to provide power for dryers, while [103] provides a survey on the use of renewable energy
in agriculture.

5.11. Circular Economy and Resource Recovery

The circular economy is an indispensable part of zero waste agriculture, underpinning
the recovery of waste materials and their use as inputs in other processes, either within
the agricultural production cycle (e.g., using waste as fertilizers [104]) or outside the
agricultural sector (e.g., using biomass from waste to produce biofuel [105]).

5.12. Challenges and Future Prospects

Implementing new technologies in zero waste agriculture presents several challenges,
including high initial investment costs, technological complexity, and the need for farmer
education and training. However, ongoing research and development are making these
technologies more affordable, user-friendly, and accessible. As the awareness of sustainabil-
ity issues grows and supportive policies are adopted, the uptake of advanced technologies
in zero waste agriculture is expected to increase, contributing to a more resilient and
environmentally friendly food system.

Future directions for zero waste agriculture involve the continued integration of
emerging technologies, such as blockchain for supply chain transparency, advanced genetic
engineering for waste reduction, and enhanced data analytics for better decision-making.
Blockchain technology can enhance transparency and traceability in agricultural supply
chains by securely recording every transaction and the movement of goods in an immutable
ledger. However, the benefits of blockchain depend on reliable data entry and system
integration. For example, IoT sensors need to record data at every stage, such as harvest,
transport, and storage, to ensure accurate records. In addition, management protocols are
needed to address challenges such as product mix-ups or segregation. Collaborative efforts
between researchers, policymakers, and farmers will be crucial in overcoming challenges
and driving the widespread adoption of zero waste practices.

6. Precision Livestock Farming: Harnessing Advanced Technologies for
Sustainable Animal Husbandry

Precision livestock farming (PLF) is an innovative approach that leverages advanced
technologies to enhance the management, welfare, and productivity of livestock. By
integrating IoT devices, AI, and other emerging technologies, PLF aims to optimize resource
use, improve animal health, and reduce the environmental impact of livestock farming.
This analysis elaborates on the key technologies and their applications in precision livestock
farming, highlighting their benefits and challenges (Figure 6).
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6.1. IoT and Sensor Technologies

IoT and sensor technologies are important drivers for the realization of PLF, support-
ing the real-time monitoring and collection of data regarding a multitude of aspects of
(a) animal health and (b) environmental conditions. Sensors are either placed in the animals’
environment or attached to animals and continuously monitor a wide range of parameters
including body temperature, feed intake, movement, and heart rate. Environmental sensors
are typically placed in the animals’ environment and provide measurements on parameters
such as temperature, humidity, air pollutants, and air quality in barns. The data are then
analyzed and the necessary actions for achieving optimal living conditions are determined.
The execution of these actions ensures optimal living conditions, which in turn reduces
the risk of disease outbreaks [106]. Wearable sensors allow for monitoring the animals’
location as well as their physiological measurements, enabling the detection of illness
or stress indications, which are then used to determine and execute suitable and timely
interventions [107].

6.2. Artificial Intelligence and Machine Learning

IoT and sensor technologies generate vast amounts of data, which can then be pro-
cessed by AI and ML algorithms. These technologies can identify patterns, trends, and
anomalies in their input data, which can be correlated to the animals’ health (e.g., early
signs of diseases), needs (e.g., feeding times), behavior (e.g., monitoring poultry movement
to provide the optimal time of ranging [108]), therefore enabling farmers to take appro-
priate actions in a timely fashion. Additionally, AI algorithms can supply farmers with
predictive analytics. AI-powered systems can also be used in resource-usage optimization,
in conjunction with the abovementioned goals, allowing the formulation of optimal feeding
strategies through the analysis of feed intake and growth rate data, ensuring both the
minimization of food waste and the intake of the appropriate amount of nutrients [109].
Animal reproduction is an additional area for the application of AI and ML algorithms,
where these technologies can predict reproductive events and enable the detailed monitor-
ing of pregnancy status, improving breeding efficiency, minimizing the overall risk in the
reproduction process and leading to improved results [110].

AI and ML algorithms can also be exploited to promote environmental comfort and
animal welfare. Morgan-Davies et al. [111] identify more than 80 separate livestock welfare
concerns that are reported by farmers, classifying them under four broad categories (nutri-
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tion, health, environment, and behavioral interactions), linking each concern to measurable
indicators—which can be obtained via technological means—and assessing the suitability
of different technologies to obtain measurements. Once adequate volumes of labeled mea-
surements have been obtained, ML models can be built; these models can then be exploited
to classify new measurements into positive or negative welfare classes and provide farmers
with timely and accurate information regarding the welfare of animals—recommending
actions for restoring welfare, where appropriate.

Nevertheless, the application of AI and ML algorithms for improving production,
optimizing resource utilization, or ensuring animal welfare entails several challenges.
Firstly, a number of studies have asserted a high diversity in species, animal husbandry
environments, and individual behavioral traits for animals, including feeding and drinking
behavior [107,112]. Under this setting, devices that are suitable for some specific species or
breeds may be inappropriate for others, leading to suboptimal performance or physical
discomfort or harm [112,113]. Researchers have also expressed concerns that the use of
technology needed to obtain the data that drive AI algorithms may lead to arrangements
that demote animal welfare, e.g., prolonging hours under lighting to facilitate image/video
capture by cameras [113,114]. In this context, legislation needs to be modernized to take
into account recent technological developments, assisting farmers to take all necessary
measures to comply with ethical standards. The European Commission has announced the
modernization of animal welfare legislation, which dates back to 1998 (Council Directive
98/58/EC); however, so far only partial improvements have been made, such as the
COM/2023/770 final proposal for a regulation on the protection of animals during transport
and related operations [115].

At the technological level, species and breed diversity pose the need for specialized
models to best fit the characteristics of each particular breed, while individualized be-
havioral traits entail the risk of failing to correctly classify measurements obtained from
specific animals since these may not fit the patterns recorded in the models. To address
these challenges, transfer learning [116] can be employed to allow the use of models created
for particular breeds/contexts for other breeds/contexts, while techniques for tackling
overfitting [117] can be employed to improve the performance concerning the correct
classification of new data.

6.3. Automated Feeding and Milking Systems

Automated feeding systems are used to provide livestock with precise quantities of
food, taking into account the individual needs of animals. Rations delivered to animals are
adjusted dynamically, both in terms of nutrient mixture and quantity, achieving optimal
nutrition delivery and minimizing food waste [118,119]. Automated milking systems are
used to automate the milking process, improving the quality of the milk and the efficiency
of the production procedure. In addition to these benefits, automated milking systems can
analyze milk composition and flow patterns to detect early symptoms of mastitis, a disease
commonly occurring in dairy cows [120].

6.4. Drones and Aerial Monitoring

Drones are increasingly used in livestock management to provide information about
the location of livestock, monitor their movement, and assess the quality of grassland.
Additionally, exceptional conditions such as injury of animals can be detected. This is
accomplished by obtaining visual or thermal imagery from cameras mounted on the drones,
and then processing the images using AI algorithms [121]. Drones provide an aerial, bird’s-
eye view of the fields, aiding farmers to manage their herds in a more efficient manner;
this is especially important for large herds and/or extensive grazing lands [122]. Thermal
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imaging may also be used to detect heat stress in animals to warrant timely interventions
to ensure animal welfare [123].

6.5. Blockchain Technology

Blockchain technology, due to the distributed and secure nature of data manage-
ment it provides, can enhance transparency and traceability in the livestock supply chain.
By recording every transaction and movement of livestock on a decentralized ledger,
blockchain ensures the authenticity of information related to animal origins, health records,
and treatment histories. However, the benefits of blockchain depend on the accuracy of
the data entered into the system, which requires reliable data collection methods—such
as IoT sensors or other monitoring technologies—at every stage of the supply chain; this
also extends to the cooperation of third parties involved in the livestock management, such
as veterinarians and certification agencies. Ensuring data transparency, verifiability, and
immutability through the use of blockchain promotes trust and enables fraud detection
and combating [9–11], while it additionally facilitates compliance with regulatory stan-
dards [124]. Moreover, blockchain can underpin the certification processes for organic and
animal welfare standards, reducing administrative burdens on farmers [125].

6.6. Genomic Technologies

Advancements in genomic technologies allow for the genetic screening and selection
of livestock with desirable characteristics, such as resistance to specific diseases, increased
growth rates in relation to the particular conditions in a specific location, and enhanced
reproductive performance. By integrating genomic data with PLF systems, farmers can
make informed decisions regarding the breeding of livestock, enhancing herd health and
productivity. Techniques like Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) gene editing offer great potential for developing livestock with improved traits,
although ethical, biodiversity, and regulatory considerations are raised and require ad-
dressing [126]. Genomic information also supports precision medicine approaches, where
treatments and interventions are tailored to the genetic profile of individual animals [127].

6.7. Environmental Monitoring and Management

PLF technologies contribute to environmental sustainability by optimizing resource
use and minimizing waste. IoT sensors and AI systems can manage manure disposal,
reducing the environmental impact of livestock farming. Manure management systems can
monitor waste production and nutrient content, enabling the efficient use of manure as fer-
tilizer, thus promoting the circular economy and reducing the risk of water pollution [128].
Animal waste can also be utilized for the production of energy [129], contributing to the
reduction in environmental pollution from waste disposal and limiting dependency on
fossil fuels.

6.8. Challenges and Future Directions

While PLF offers numerous benefits, it also presents challenges including (a) high
initial investment costs, (b) data management complexities, and (c) the need for farmer
education and training. Ensuring data security and privacy is another critical concern, given
the sensitive nature of health and operational data collected from farms [17,130]. However,
ongoing advancements in technology, increased computer literacy, and decreasing costs
are making PLF more accessible to farmers of all scales.

Future directions for PLF include the integration of advanced robotics, enhanced data
analytics, and the development of more sophisticated AI models. These AI models could be
used to predict diseases, detect abnormalities in animal behavior, optimize nutrition tailored
to the specific needs of each animal, and automate complex decision-making processes
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such as resource management and production planning [131]. For instance, sophisticated
AI models could simulate the entire livestock breeding ecosystem, helping predict the
cascading effects of environmental changes or conservation interventions. Collaborative
efforts between researchers, technology developers, and farmers will be essential to address
challenges and drive innovation in this field. By embracing these technologies, the livestock
industry can achieve higher levels of sustainability, animal welfare, and productivity.

7. Smart Greenhouses: Integrating Advanced Technologies for
Sustainable Crop Production

Smart greenhouses are a significant advancement in agricultural technology, lever-
aging the IoT, AI, and various other emerging technologies to create optimal growing
conditions for crops. These high-tech environments enhance resource use efficiency, im-
prove crop yields, and contribute to sustainable agricultural practices. This section explores
the key technologies involved in smart greenhouses, their applications, and the benefits
they offer (Figure 7).
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7.1. IoT and Sensor Technologies

IoT and sensor technologies form the backbone of smart greenhouses, providing
continuous monitoring and control of environmental conditions, thus contributing to the
key goal of greenhouses. Sensors measure the parameters such as temperature, humidity,
soil moisture, light intensity, and CO2 levels. The data are transmitted in real time to a
central system that arranges for adjusting the greenhouse environment accordingly. For
example, soil moisture sensors can trigger automated irrigation systems to maintain optimal
soil moisture levels, reduce water usage, and prevent over-irrigation [96,132].

7.2. Artificial Intelligence and Machine Learning

AI and ML algorithms analyze the data collected by IoT sensors to optimize green-
house management. Optimization spans across multiple areas of greenhouse management,
including the prediction of crop growth patterns, early disease detection, and recommen-
dations on adjustments to environmental conditions. ML models can process historical
data to identify the optimal growing conditions for specific plant types, contributing to
the enhancement of productivity and elevating resource usage efficiency [44,45]. AI-based
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systems can also be used for the formulation of optimal lighting schedules in greenhouses
with LED grow light installations, delivering the required amount of light to the plants at
the right times [133].

7.3. Automated Climate Control Systems

Maintenance of optimal growing conditions is a key goal for greenhouses. Automated
climate control systems are a critical enabler toward the attainment of this goal. Automated
climate control systems exploit the data sourced from IoT sensors to determine deviations
from optimal temperature, air quality, lighting, and other environmental parameters, and
make the necessary adjustments in real time. For instance, if data provided from lighting
sensors indicate over-exposure to direct sunlight, automated shading systems can be
triggered to block sunlight inflow [134–136].

7.4. Hydroponics and Aeroponics Systems

Smart greenhouses often use hydroponics and aeroponics systems, which are soilless
farming techniques where plants grow in nutrient-rich solutions or mist environments.
These systems enable the delivery of nutrients to plants with elevated precision and
control. In hydroponics, IoT sensors can be used to monitor the pH of the solution and
its nutrient content in real time, allowing for timely and accurate interventions to ensure
that plants grow under optimal conditions and are fed with the correct mix and amount of
nutrients [137]. Similarly in aeroponic systems, the fine mist composition can be monitored
and precisely controlled to provide optimal growing conditions, improve nutrient uptake
efficiency, and minimize resource usage [64,138].

7.5. Renewable Energy Integration

Smart greenhouses need considerable amounts of energy to drive environmental
condition-regulation systems, including lighting, heating, and cooling systems. The energy
needed for these systems can be harvested from renewable energy sources, such as solar
panels and wind turbines, leading to a reduction in reliance on fossil fuels [139] and the low-
ering of operational costs and carbon footprint. The energy harvested from these systems
during peak production hours (plentiful sunlight or strong wind) can be saved in energy
storage systems, such as batteries, to cater for energy provision in periods where energy
inflow from renewable sources is not adequate [140,141]. The use of renewable energy
promotes the goals of sustainability and environmental friendliness of smart greenhouses.

7.6. Robotics

Robotics are an important enabler concerning the automation and efficiency of tasks
in smart greenhouses. Robotics systems are used in the final link of the “sense–decide–
act” chain [142], executing actions that are taken after collecting data from sensors and
processing them using AI systems to make informed decisions on different smart green-
house tasks, including irrigation, fertilization, plant protection, and pest control. Robotics
can also be used to automate repetitive and labor-prone tasks, such as planting, pruning,
and harvesting, leading to labor cost reduction and increased precision. For instance,
robotic systems driven by AI algorithms can identify and harvest ripe products with high
accuracy [143,144].

7.7. Data Analytics and Cloud Computing

Data analytics include algorithms that process the data concerning the smart green-
house operation, identifying trends and patterns in crop growth, the usage of resources, as
well as environmental conditions and their effect on plants to produce meaningful insights,
enabling data-driven decision-making. Cloud computing offers the necessary infrastruc-



Information 2025, 16, 100 23 of 40

ture for the storage, management, and processing of these data, providing a centralized
interface through which farmers may monitor and manage the smart greenhouse operation
without time or location restrictions [145,146]. Cloud infrastructure eases the financial,
technical, and administrative burden for farmers since it has proven to be less costly than
privately owned infrastructure; additionally, the infrastructure management, maintenance,
and support tasks are offloaded to the cloud provider [147].

7.8. Blockchain Technology

Blockchain technology provides an infrastructure for storing information in a secure
way, enhancing transparency, trust, and traceability in smart greenhouse operations. Data
and information are organized in transactions that are stored on a decentralized ledger.
Blockchain ensures that all information related to crop production, such as seed origin,
growth conditions, and harvest dates, is securely documented. This transparency strength-
ens consumer trust and underpins compliance with regulations and standards on food
safety and quality. It is worth noting that blockchain technologies can be utilized across
all stages of the smart greenhouse value cycle, including cultivation, harvesting, post-
harvesting processing, and logistics, providing a tamper-proof record of the entire process
from the field to the end-consumer [148,149].

7.9. Environmental and Economic Benefits

The adoption and use of AI and related technologies in smart greenhouses offers
significant environmental and economic benefits. By optimizing resource use, smart green-
houses can reduce water and energy consumption, minimize the use of chemical fertilizers
and pesticides, and lower greenhouse gas emissions. These gains not only contribute
to environmental sustainability but also reduce operational costs, increasing the viabil-
ity of greenhouse farming. Furthermore, the integration of these technologies in smart
greenhouses increases the ability to produce larger quantities and higher-quality crops
in controlled environments throughout the year, enhancing food security and reducing
dependence on seasonal and imported produce [14,150].

7.10. Challenges and Future Directions

Despite the numerous benefits, the implementation of smart greenhouse technologies
presents challenges such as high initial investment costs, technical complexity, and the
need for specialized knowledge and training. Ensuring data security and privacy is also a
critical concern, given the extensive use of IoT devices and cloud computing. However,
advancements in technology and decreasing costs are making smart greenhouses more
accessible to farmers. Moreover, government and institutional initiatives—such as the
National e-Governance Plan in Agriculture (NeGPA) in India [151] as well as the World
Bank Group’s Climate Change Action Plan (2021–2025) [152]—can assist in overcoming
financial barriers for the adoption of advanced technologies in precision agriculture.

8. Regenerative Agriculture: Leveraging Advanced Technologies for
Sustainable Soil Health and Ecosystem Restoration

Regenerative agriculture is a holistic approach to farming that aims to restore soil
health, enhance biodiversity, minimize carbon footprint, and improve ecosystem resilience.
By integrating advanced technologies, such as the IoT, AI, drones, and blockchain, re-
generative agriculture can be more effectively implemented, monitored, and managed.
This section explores the use of these technologies in regenerative agricultural practices,
highlighting their benefits, applications, and future prospects (Figure 8).
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8.1. IoT and Sensor Technologies

IoT and sensor technologies are pivotal in monitoring soil health and environmental
conditions in real time. Sensors placed in the soil can measure parameters such as mois-
ture levels, nutrient content, pH, and temperature. These parameters can be exploited
to monitor and manage soil health, ensuring optimal conditions for plant growth. For
example, measuring soil moisture through sensors can provide the necessary information
for automated irrigation systems to supply the appropriate amount of water, saving re-
sources and avoiding over-irrigation [153]. Equally, hyperspectral nutrient sensors can
provide measurements concerning the amount of nutrients in the soil, which can be used
to guide the fertilization process, ensuring the sufficiency of nutrients and preventing
over-application [154].

8.2. Artificial Intelligence and Machine Learning

AI and ML are key enablers for the transformation of farming processes, playing a
crucial role in the usage and analysis of agricultural data. AI and ML techniques process
data streams acquired from different sources such as IoT sensors, satellites, and drones
and output predictions, recommendations, and actionable insights. Examples include the
recommendation of crop rotations to maximize the benefits of regenerative agriculture, or
the application of cover cropping to prevent soil erosion and reduce tillage [155]. ML models
process both repositories of historical and streams of real-time data to recommend the
best-suited regenerative agriculture practices for specific fields and cultivations, improving
overall farm management [156]. AI-driven decision support systems can also aid farmers to
reduce labor costs and minimize resources needed for their farms through recommending
appropriate regenerative practices to be used and/or providing consultation to farmers on
how specific practices should be applied [157,158].

8.3. Drones and Aerial Imaging

Drones equipped with high-resolution cameras can provide detailed visual aerial
imagery of fields. Similarly, other drone-mounted equipment, such as multispectral cam-
eras, can be used to obtain aerial imagery of fields outside the visual spectrum, which
conveys information about multiple aspects of the cultivation including nutrient levels,
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fruit ripeness, etc. Aerial imaging is important since it can reveal patterns that are not
visible from the ground level, facilitating the detection of pest infestations, soil erosion,
or nutrient deficiencies. When the analysis of drone-sourced data manifests the presence
of a condition, farmers can plan and implement appropriate interventions, including the
application of cover cropping to erosion-prone areas, or the application of organic amend-
ments to areas with low soil fertility [159]. Aerial imagery can also be used to assess the
effectiveness of regenerative practices in longitudinal studies, documenting visual evidence
of the improvements in soil health and the resilience of crops [160].

8.4. Blockchain Technology

Blockchain technology enhances transparency and traceability in regenerative agricul-
ture. By recording every step of the farming process on a decentralized ledger, blockchain
ensures that all information related to soil management, crop production, and carbon
sequestration is documented and stored securely in a tamper-proof fashion. This trans-
parency builds consumer trust and facilitates compliance with organic and regenerative
certifications [160,161]. It is worth noting that blockchain technologies can be utilized
across all stages of the regenerative agriculture value cycle, including planning, cultivation,
harvesting, post-harvesting processing, and logistics, providing a tamper-proof record of
the entire process from the field to the end-consumer [148,149].

8.5. Renewable Energy Integration

Integrating renewable energy sources into regenerative agriculture operations reduces
the environmental footprint and enhances sustainability. Solar panels, wind turbines, and
biogas systems can power farm equipment, irrigation systems, and processing facilities,
reducing reliance on fossil fuels [139]. Renewable energy systems can be monitored and
managed using the IoT and AI technologies, ensuring optimal performance and efficiency.
By combining renewable energy with regenerative practices, farms can achieve a higher
level of sustainability and resilience [162].

8.6. Genomic Technologies

Genomic technologies enable the selection and breeding of crops that are well-suited
to regenerative practices and local conditions. These technologies are used to analyze the
genetic profiles of crop varieties, assisting farmers in identifying those varieties that have
traits that contribute to soil health and ecosystem resilience [163]. These traits include,
among others, deep root systems, drought resistance, and nutrient efficiency. Genomic
technologies are also used in the process of developing new crop varieties through plant
breeding or through advanced techniques such as CRISPR and other gene-editing tools,
enhancing the effectiveness of regenerative agriculture [164].

8.7. Carbon Sequestration Monitoring

Carbon sequestration is a key goal of regenerative agriculture. To this end, carbon
levels in soil are monitored and verified using advanced technologies. More specifically,
IoT sensors and remote-sensing technologies are used to quantify the carbon content. These
measurements are stored to allow for the tracking of level changes along the time axis.
These data, combined with tags concerning the regenerative practices used in specific
areas, are fed to AI algorithms to estimate the amount of carbon sequestration achieved
by different regenerative practices, providing important insights that can be exploited
in climate mitigation efforts [165]. Both the data gathered throughout the monitoring
process and the insights computed can be stored using blockchain technologies, providing
guarantees for the integrity of data, and supporting transparency and verifiability of records
associated with carbon-sequestration activities [166].
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8.8. Environmental and Economic Benefits

The integration of advanced technologies in regenerative agriculture offers significant
environmental and economic benefits. By restoring soil health and enhancing biodiversity,
regenerative practices improve ecosystem services, such as water filtration, pest control,
and pollination. These improvements contribute to greater resilience against climate change
and extreme weather events [23]. Economically, regenerative agriculture can reduce input
costs by minimizing the need for synthetic fertilizers and pesticides, while potentially
increasing yields and market value through improved soil health and crop quality [167].

8.9. Challenges and Future Directions

Despite the numerous benefits, the implementation of regenerative agriculture tech-
nologies presents challenges such as high initial investment costs, technical complexity,
and the need for farmer education and training. Ensuring data security and privacy is
also a critical concern, given the extensive use of IoT devices and blockchain technol-
ogy [17,168]. However, ongoing advancements in technology and decreasing costs are
making regenerative agriculture more accessible to farmers.

9. Discussion
Incorporating advanced technologies into modern farming practices is proving to

be vital in transforming the agricultural sector into a more productive, sustainable, and
resilient one. Examining the applications and impacts of these technologies across a range of
areas within the agricultural sector—including smart open field farming, vertical and indoor
farming, zero waste farming, precision farming, smart greenhouses, and regenerative
agriculture—it is established that innovations, such as AI, the IoT, and sensors but also
data analytics, big data, drones, and blockchain are revolutionizing traditional agricultural
practices. Figure 9 illustrates the linkage between areas of the agricultural sector and
advanced technologies.
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The necessity of developing and applying these technologies and, additionally, the
necessity of integrating AI and ML algorithms—as well as IoT systems—in all branches of
agriculture is underlined by the answers given to the critical scientific questions posed and
analyzed in this study. These highlight the significant contribution of these innovations
to the agricultural sector. It is established that the incorporation of these technologies
can transform the way crops are grown, monitored, and managed, leading to increased
production, reduced resource usage and waste, and greater sustainability.

AI and ML algorithms can analyze large datasets to predict weather conditions, soil
moisture, and other important factors that affect plant growth. These forecasts can help
farmers adjust their cropping practices and avoid losses. Ground-mounted IoT sensors can
collect data regarding soil conditions, including moisture, temperature, and conductivity.
These data can be analyzed by AI algorithms to determine the exact amount of water and
other nutrients the crop needs, thereby reducing the environmental footprint of agriculture.
The analysis can be extended to include data obtained from additional sources, such as
sensors, satellites, and historical data, to optimize production and maximize profits. Images
from drones or sensors can be analyzed by deep learning algorithms to detect early signs
of disease and pests in plants, allowing farmers to take the necessary steps to tackle the
problem before it spreads. Robots and autonomous vehicles can perform a number of
tasks such as sowing, fertilizing, and harvesting with greater precision and efficiency
than humans.

The application of AI and new technologies, such as the IoT and robotics, can bring
significant benefits to vertical and indoor farming techniques. These technologies help
improve productivity as AI can control and optimize factors such as light, temperature,
and humidity, enabling greater yields with reduced resource consumption. At the same
time, the consumption of water and pesticides is reduced since indoor crops in a controlled
environment are more efficient and protect plants from pests and diseases. Robotics and
the IoT help reduce the need for human labor, while the ability to monitor crops in real
time ensures more accurate decisions. Vertical cultivation, in addition to saving space and
the possibility of growing food in urban areas, allows for a reduction in transport costs and
the environmental footprint. However, the use of these technologies is associated with a
number of challenges. The initial cost for investing in AI, the IoT, and robotics equipment
is high, which can be a barrier for smaller producers. In addition, energy requirements are
high, particularly for lighting and maintaining climate control. The security of the data
collected through sensors is also an important issue as it is necessary to ensure that they are
protected from cyber-attacks. Therefore, the balance between the benefits and challenges
for the sustainable development of vertical and indoor cultivation with the help of AI and
new technologies is critical.

In the development of zero waste agriculture, AI and ML, the IoT, and new technolo-
gies in general can contribute to reducing waste, promoting more sustainable agricultural
practices, and reducing the environmental footprint of agriculture. Thanks to AI, the
analysis of big data obtained from IoT systems and intelligent algorithms allows for the
optimal use of resources, reducing the overconsumption of water, fertilizers, and energy.
For example, AI can predict crop needs in real time, ensuring the accurate application of
fertilizers and nutrients, which reduces losses and waste while helping to manage resources
properly. Additionally, automation technologies, such as robotics, can manage crop har-
vesting and processing with minimal waste. Robotic solutions are able to separate products
and waste more efficiently, allowing for the reuse or recycling of biological materials, e.g.,
for composting or energy production. The integration of the circular economy into zero
waste agriculture is also enhanced by these technologies as production residues can be used
in other processes or transformed into new products, reducing the ecological footprint of
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agriculture. Despite the significant potential of these technologies, challenges also appear,
of course, such as the cost of implementation and the need for specialized personnel to
manage the systems. The integration of AI and IoT systems into traditional agricultural
units requires time and investments in training and infrastructure. The energy required by
these technologies, particularly in areas with limited access to renewable energy sources,
may also increase the environmental footprint, although renewable energy sources could
mitigate this problem.

AI, ML, and new technologies can also play a decisive role in improving animal health
and productivity. AI, through the analysis of real-time data obtained from the use of IoT
technologies and wearable devices such as biosensors, enables the accurate monitoring of
animal health, alerting farmers to potential health problems in a timely fashion, allowing for
suitable interventions. Early disease detection and diagnosis reduce the need for massive
antibiotic use and improve animal welfare. ML can analyze high data volumes coming
from animals and their environment using advanced algorithms. This allows their diet
to be predicted and optimized, ensuring that each animal receives the nutrients exactly
corresponding to its individual needs. Thus, productivity increases as animals grow faster
and healthier. In addition, automation technologies such as automatic feeding systems
can more effectively manage animal nutrition and living conditions, reducing waste and
improving production efficiency. These systems can adjust the amounts of food according
to the needs of the animal, ensuring optimal results and minimizing costs. However, using
these technologies in livestock farming is also associated with implementation challenges,
as outlined below:

(a) The installation and maintenance costs of AI and IoT systems can be high, especially
for smaller farmers;

(b) Data analysis requires specialized knowledge;
(c) Increasing the need for trained personnel and data security is a critical aspect as the

collection and storage of vital personal animal information could be vulnerable to
cyber-attacks.

New technologies for smart greenhouses, such as AI, ML, and the IoT, lead to enhanced
crop production, optimized growing conditions, and increased efficiency. AI is used to
monitor and analyze environmental conditions inside the greenhouse, such as temperature,
humidity, and light. These data are collected by IoT systems. AI can be used on the data to
automatically adjust heating, lighting, and irrigation systems, ensuring optimal conditions
for plant growth and reducing the waste of resources, such as water and energy. ML
algorithms can predict plant growth, detect problems—such as nutrient deficiencies or
disease occurrence at early stages—and recommend corrective measures before problems
have an impact on production. This allows producers to make more targeted decisions,
reducing the risk of crop loss and improving product quality. At the same time, automated
irrigation and fertilization systems, based on data from sensors, ensure that plants receive
exactly the amount of water and nutrients they need, without excess. Saving resources and
reducing energy consumption contribute to the sustainability of production. In addition,
smart systems allow the cultivation of plants, regardless of the season, providing constant
production throughout the year while reducing the dependence on climatic conditions.

Regenerative agriculture practices can be significantly improved using AI, ML, and
other new technologies, enhancing processes efficiency and sustainability. AI can be used
to analyze large amounts of data collected from soil, crops, and the environment, enabling
the monitoring of soil health and optimal management of agricultural land. With the help
of IoT sensors that monitor real-time indicators, such as moisture, organic matter content,
and microbial activity, farmers can make data-driven decisions to regenerate the soil and
increase its fertility. Through ML algorithms, farmers can predict soil and plant needs
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more accurately or when and how actions such as seeding, fertilization, or crop rotation
should be conducted, ensuring that regenerative farming practices maximize organic matter
restoration of the soil and reduce erosion. This helps restore soil health and absorb carbon
dioxide from the atmosphere, thereby helping to reduce greenhouse gas emissions. At the
same time, automation technologies can monitor and manage agricultural practices more
precisely, allowing farmers to know when it is the right time for regenerative processes,
such as covering the soil with plants or incorporating the right crops to enhance biodiversity.
This allows for immediate adaptation to changes in environmental conditions, reducing
resource wastage and ensuring that land is used in the most sustainable way. Moreover,
the use of drones and satellite imagery can monitor vegetation and crop conditions on a
large scale, allowing problems such as erosion or fertility loss to be detected earlier than
with traditional methods.

To date, a number of publications have reported concrete results concerning the
successful application of new technologies in the agricultural sector, strengthening the
confidence of farmers in precision farming practices and promoting their adoption and
take-up. In the following paragraphs, we briefly summarize a number of success stories;
for more concrete examples, the interested reader may refer to [5,31].

• Artificial intelligence systems developed in Dutch greenhouses have been shown to
reduce energy consumption by up to 15%, demonstrating the potential of artificial
intelligence to contribute to more sustainable agricultural practices [169];

• Approximately 20–40% of crops are lost annually due to pests and diseases as a result
of a lack of good monitoring of the condition of the crop [170]—a percentage that can
be minimized by using IoT systems for real-time crop monitoring. An example of
real-time disease detection in wheat fields, driven by AI, resulted in a 20% reduction
in yield losses compared to traditional methods, highlighting the significant impact of
AI in enhancing crop health and yield [171];

• IoT platform implementation is yielding significant positive results, such as the Agri-
Talk IoT platform, which has led to a 40–60% increase in chlorophyll levels in turmeric
plants, surpassing traditional cultivation methods. Furthermore, it enabled a remark-
able 70% saving in water during the cultivation process. In particular, the adoption of
the Agri-Talk IoT platform has proven to be economically rewarding. By investing
USD 14,000 in the platform, farmers have generated USD 140,000 in revenue. This
achievement highlights the economic viability and efficiency of the Agri-Talk IoT
platform compared to conventional farming methods [31,172];

• The adoption of agricultural robots in the US, Europe, and many countries in Asia has
expanded and improved the efficiency of agriculture as they have reduced operational
costs and operating times [53]. In addition, they can reduce environmental pollution
by up to 80% of pesticides. They are also practical tools to provide unconventional
solutions for smart agriculture to address labor shortages, especially in the spread of
diseases such as COVID-19. This result is due to the fact that many agricultural robots,
such as robots for harvesting, seedlings, weed detection, irrigation and pest control,
livestock applications, etc., can perform more than one function [173].

Adopting smart farming systems poses challenges, including learning new systems
and dealing with setup costs. Strong support is crucial for integrating smart farming into
practice. Understanding the current state of agriculture, technology trends, and challenges
is essential for a smooth transition and acceptance of technology. Both large-scale and
smallholder farmers are reluctant to undertake these costs without clear and comprehensive
benefits and increased convenience. Also, to enhance technological receptivity within the
agricultural sector, factors such as computer self-efficacy, computer anxiety (excessive
anxiety related to computer use), and the age variable should be examined [31]. These
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factors are also underscored by the United Nations Development Programme [30], which
refers to barriers due to a lack of digital infrastructure since more than 600 million people
live in areas not covered by mobile networks; thus, the 2G connectivity that is essential for
any precision agriculture application is not available, while a smaller percentage of farmers
has no access to electricity.

Certainly, the support provided by each government to farmers, both financially
and by providing appropriate education, should be intensified as we can see worldwide
(Table 5) that several countries have adopted and developed smart agriculture systems but
others have not taken steps in this direction.

Table 5. Classification table of countries according to geographical location, level of development
according to the International Monetary Fund, in relation to lifetime income.

Continent

Level of Development

Higher Development
Countries

Middle Development
Countries Lower Development Countries

Africa Seychelles South Africa
Ethiopia
Kenya

Uganda

Asia Israel
Japan

Malaysia
Thailand

India
China

Pakistan

America United States
Canada

Mexico
Colombia

As of the writing of this review, no
reports were found on the development

of governmental smart agriculture
programs in countries of these categories.

Europe
Denmark

Netherlands
Sweden

As of the writing of this review, no reports were found on the
development of governmental smart agriculture programs in countries

of these categories. The search included countries such as Moldova,
Ukraine, Albania, Bosnia and Herzegovina, North Macedonia,

and Kosovo.

Oceania Australia
New Zealand

As of the writing of this review, no reports were found on the
development of governmental smart agriculture programs in countries
of these categories in Oceania. The search included countries such as

Fiji, Samoa, Tonga, Papua New Guinea, Solomon Islands, and Vanuatu.

The perception must be adopted that strengthening the agricultural sector in terms of
the use of new technologies will help both in improving living conditions at an individual
and broader social level as well as in the global effort to address the impacts of climate
change. The following Table 4 classifies countries according to their geographical location
and their level of development according to the International Monetary Fund in relation to
lifetime income, which have or have not developed smart agriculture programs [31].

Considering the aspect of literacy and digital skills, the advent of generative AI can
provide the tools for overcoming relevant barriers. Generative AI-based chatbots can be
used to create natural language interfaces for precision agriculture systems, making them
accessible to farmers with basic digital skills. For instance, Darli [174] is an AI-based chatbot
aiming to provide small-scale farmers, especially in developing regions, with crop-specific
guidance on farming practices, disease diagnosis, as well as market and logistics advice.
Darli is available in 27 languages, facilitating communication with its users. The AI chatbot
by Digital Green [175] follows a different model, addressing agricultural extension agents
who are professionals providing training and information for farmers. Under this model,
small-scale farmers resort to agricultural extension agents for instructions and advice, and
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agents employ the chatbot to formulate timely, accurate, and tailored advice to the requests
they receive. This is particularly important in countries such as India, Kenya, and Ethiopia,
where agents are few and the diversity of crops, conditions, and individual situations that
need to be handled is significant.

Generative AI has the additional potential to deliver benefits for multiple stakeholders
in the precision agriculture domain. In its 2024 report, Microsoft identified eight precision
agriculture stakeholder classes (farmers; input providers/agronomists; consumers; retailers;
food manufacturers/supply chain agents; bankers; policymakers; and researchers/data
scientists), where each stakeholder may participate in multiple use cases [176], including
decision-making for seeds, purchases, and management (farmers); purchasing decisions
and sustainability (retailers); coordination with farmers on prices and food standards (food
manufacturers/supply chain agents); and so forth. An example of generative AI application
in the livestock management domain is the application provided by DataMars that helps
farmers to better manage their animals, improving their welfare as well as their productivity
while it additionally assists farm-supporting partners such as advisors and feed companies
to meet sustainability targets [175]. Generative AI can also be used to support machine
learning methods used in multiple precision agriculture domains, addressing the issue
of data scarcity: indeed, in multiple areas of precision agriculture there is a shortage of
labeled training data, inhibiting the creation of ML models. In this context, the potential
of generative AI to process large amounts of unlabeled historical data together with small
amounts of labeled data can be exploited, creating pipelines where generic patterns can
be identified and accurate predictions can be made [177]. Moreover, generative AI can be
used for the creation of synthetic training datasets, which can be used in the absence of
real-world datasets [177].

Regenerative AI is a recently introduced term referring to systems that are able to
generate new content, insights, or solutions autonomously [178]. In the context of precision
agriculture, regenerative AI holds promise for novel applications spanning all stages of the
agriculture value chain, including new research and development. The work in [178] high-
lights eight areas of precision farming where regenerative AI systems can play a significant
role, outlined as follows: (i) precision farming and crop management; (ii) market forecasting
and pricing; (iii) supply chain optimization; (iv) sustainability and regenerative agriculture;
(v) risk management; (vi) smart contract generation and management; (vii) data-driven
innovation; and (viii) consumer engagement and transparency. It is worth noting that while
machine learning-based and generative AI-based applications already cover aspects of
these areas, regenerative AI extends the potential of applications beyond the scope currently
covered. For instance, in the area of crop management, regenerative AI can generate com-
prehensive, adaptive models for plant growth that take into account real-time data such as
disease outbreaks, soil nutrient levels, and weather conditions, facilitating the formulation
of optimized planting schedules. Additionally, in the sustainability area, regenerative AI
can be used to promote biodiversity and ecosystem resilience through the development
and simulation of scenarios that consider practices for soil health improvement, such as
crop rotation and intercropping. For more information, the interested reader is referred
to [178–180].

Overall, AI, ML, and new technologies can drastically improve regenerative agri-
culture practices, helping to restore soil health, increase productivity, and reduce envi-
ronmental footprints. Despite the challenges, the use of these technologies—which are
constantly evolving and their costs decreasing—enhances the sustainability and resilience
of agricultural systems, supporting farmers to manage their arable land more effectively.
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10. Conclusions
This study has conducted a comprehensive review of the integration of advanced tech-

nologies in the agricultural sector, including AI, the IoT, blockchain, and other emerging
innovations. Toward this goal, this study has examined scientific works that were identified
through a systematic search in scientific databases, considering additional seminal papers
and practice reports. Through this process, this study has identified six areas of smart
farming (open field smart farming, vertical and indoor farming, zero waste agriculture,
precision livestock farming, smart greenhouses, and regenerative agriculture) and has
surveyed within each of these the application fields of advanced technologies, as well as
the benefits and challenges associated with the applications of these advanced technolo-
gies in each area. In parallel, this study has recorded data concerning the uptake and
implementation of the smart agriculture model in the target areas.

In conclusion, the successful integration and increased take-up of AI, ML, and other
state-of-the-art technologies is essential for the agricultural sector. Through the use of
these innovations, farmers can achieve higher productivity, resilience, and sustainability
while, at a more global scale, the overall security and sustainability of the food system can
be enhanced.

The objective of this study is to conduct a comprehensive review of the integration of
advanced technologies in the agricultural sector, including AI, the IoT, blockchain, and other
emerging innovations. This study will reveal application areas of technologies in different
fields of smart agriculture and provide insights into the current situation in the agricultural
sector concerning the uptake and implementation of the smart agriculture model.

This paper is intended to serve as a reference for researchers and practitioners alike by
synthesizing current research, technological developments, and case studies on agricultural
practices across different precision farming sectors. It comprehensively overviews the
benefits, challenges, and future perspectives of the broad integration of AI and ML, the
IoT, drones, and blockchain in agriculture, offering insights into further research as well
as practical applications. Through the identification of existing challenges and further
needs, areas for future research and development in sustainable agriculture technologies
are outlined, with many of them entailing interdisciplinary collaboration and innovation.

In addition, this paper examines critical global challenges, such as food security, en-
vironmental sustainability, and climate change. It highlights how advanced technologies
can contribute to addressing these issues, providing a road map for researchers, policy-
makers, and practitioners to develop and implement effective strategies. Bridging the gap
between technological innovation and practical application in agriculture, this manuscript
supports the advancement of knowledge and the development of sustainable agricultural
systems worldwide.
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